### The hierarchy problem and the cosmological constant problem in the Standard Model

(0 votes over all institutions)

We argue that the SM in the Higgs phase does not suffer form a "hierarchy problem" and that similarly the "cosmological constant problem" resolves itself if we understand the SM as a low energy effective theory emerging from a cut-off medium at the Planck scale. We discuss these issues under the condition of a stable Higgs vacuum, which allows to extend the SM up to the Planck length. The bare Higgs boson mass then changes sign below the Planck scale, such the the SM in the early universe is in the symmetric phase. The cut-off enhanced Higgs mass term as well as the quartically enhanced cosmological constant term trigger the inflation of the early universe. The coefficients of the shift between bare and renormalized Higgs mass as well as of the shift between bare and renormalized vacuum energy density exhibit close-by zeros at some point below the Planck scale. The zeros are matching points between short distance and the renormalized low energy quantities. Since inflation tunes the total energy density to take the critical value of a flat universe Omega_tot=rho_tot/rho_crit=Omega_Lambda+Omega_matter+Omega_radiation}=1 it is obvious that Omega_Lambda today is of order Omega_tot given that 1>Omega_matter, Omega_radiation>0, which saturate the total density to about 26 % only, the dominant part being dark matter(21 %).